Hurdle, Inflated Poisson and Inflated Negative Binomial Regression Models ‎ for Analysis of Count Data with Extra Zeros

author

Abstract:

In this paper‎, ‎we ‎propose ‎Hurdle regression models for analysing count responses with extra zeros‎. A method of estimating maximum likelihood is used to estimate model parameters. The application of the proposed model is presented in insurance dataset‎. In this example‎, there are many numbers of claims equal to zero is considered that clarify the application of the model with a zero-inflated count response‎. ‎Different count regression models are introduced in this paper to model such data sets. Including Hurdle Poisson and Hurdle Negative Binomial regression models‎.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Zero inflated Poisson and negative binomial regression models: application in education

Background: The number of failed courses and semesters in students are indicatorsof their performance. These amounts have zero inflated (ZI) distributions. Using ZI Poisson and negative binomial distributions we can model these count data to find the associated factors and estimate the parameters. This study aims at to investigate the important factors related to the educational performance of ...

full text

Estimation of Count Data using Bivariate Negative Binomial Regression Models

Abstract Negative binomial regression model (NBR) is a popular approach for modeling overdispersed count data with covariates. Several parameterizations have been performed for NBR, and the two well-known models, negative binomial-1 regression model (NBR-1) and negative binomial-2 regression model (NBR-2), have been applied. Another parameterization of NBR is negative binomial-P regression mode...

full text

zero inflated poisson and negative binomial regression models: application in education

background: the number of failed courses and semesters in students are indicatorsof their performance. these amounts have zero inflated (zi) distributions. using zi poisson and negative binomial distributions we can model these count data to find the associated factors and estimate the parameters. this study aims at to investigate the important factors related to the educational performance of ...

full text

Multi-level zero-inflated poisson regression modelling of correlated count data with excess zeros.

Count data with excess zeros relative to a Poisson distribution are common in many biomedical applications. A popular approach to the analysis of such data is to use a zero-inflated Poisson (ZIP) regression model. Often, because of the hierarchical study design or the data collection procedure, zero-inflation and lack of independence may occur simultaneously, which render the standard ZIP model...

full text

a new approach to credibility premium for zero-inflated poisson models for panel data

هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...

15 صفحه اول

Zero-Inflated Poisson and Zero-Inflated Negative Binomial Models Using the COUNTREG Procedure

Real-life count data are frequently characterized by overdispersion and excess zeros. Zero-inflated count models provide a parsimonious yet powerful way to model this type of situation. Such models assume that the data are a mixture of two separate data generation processes: one generates only zeros, and the other is either a Poisson or a negative binomial data-generating process. The result of...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 23  issue 1

pages  89- 97

publication date 2018-09

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023